Please wait a minute...
浙江大学学报(工学版)
能源工程     
考虑受电弓系统的高速列车气动噪声分析
罗乐1,郑旭1,吕义2,郝志勇1
1.浙江大学 能源工程学系 浙江 杭州 310027| 2.长春轨道客车股份有限公司 吉林 长春 130000
Aerodynamic noise analysis of high speed train with pantograph system
LUO Le1,ZHENG Xu1,LV Yi2,HAO Zhi yong1
1. Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China;2. Changchun Railway Vehicles Company Limited Changchun 130000, China
 全文: PDF(2743 KB)   HTML
摘要:

对CRH3型高速列车在350 km/h运行速度下的气动噪声进行数值模拟.分别搭建受电弓和车厢风洞模型,并采用大涡模拟(LES)计算外部瞬态流场.脉动压力具有偶极子声源特性,可以通过直接边界元法(DBEM)转化为气动噪声.对比分析受电弓的远场气动噪声和车厢的近场气动噪声的频谱特性和分布规律.结果表明:受电弓气动激励集中分布在车厢后端,而车厢气动激励主要作用于不平整的结构表面;前者是一种宽频噪声,在2 000 Hz内均呈下降趋势;后者的频谱在300 Hz以内急剧下降,300~1 500 Hz频段内平缓波动,在1 500 Hz以上呈先下降后上升的趋势;距离受电弓区域越远,受电弓气动噪声占总气动噪声的比重越低.气动噪声结果可用于高速列车的车内噪声预测.

Abstract:

The aerodynamic noise of a CRH3 high speed train was simulated at 350 km/h. The wind tunnel models of the pantograph and coach were constructed respectively, and large eddy simulation (LES) was adopted to calculate the external transient flow fields. The fluctuation pressure possessed dipole source attribute, which could be transferred to aerodynamic noise by direct boundary element method (DBEM). The spectrum characteristics and distribution regularities of the far field aerodynamic noise from the pantograph and the near field aerodynamic noise from the coach were compared. The results show that the aerodynamic noise from the pantograph is a broad band noise with a decreasing trend within 2 000 Hz, which distributes intensively on the trailing end of the car body. The aerodynamic noise from the coach mainly aggregates on the irregular surfaces of the structure, of which the spectrum presents a sharp fall within 300 Hz, an oscillation in 300 1 500 Hz, and a decrease to increase trend above 1 500 Hz. When the distance from the pantograph area goes farther, the proportion of pantograph aerodynamic noise counts lower in the overall aerodynamic noise. The results of the aerodynamic noise can be used in the interior noise prediction of the high speed train.

出版日期: 2015-11-01
:  TB 532  
基金资助:

国家“863”高科技研究发展计划资助项目(2011AA11A103)

通讯作者: 郑旭,男,讲师. ORCID:0000 0001 9000 6593.     E-mail: zhengxu@zju.edu.cn
作者简介: 罗乐(1990-),男,博士生,从事高速列车减振降噪与信号处理等方面研究. ORCID:0000 0002 9049 6171.E-mail: 11127014@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

罗乐,郑旭,吕义,郝志勇. 考虑受电弓系统的高速列车气动噪声分析[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008 973X.2015.11.020.

LUO Le,ZHENG Xu,LV Yi,HAO Zhi yong. Aerodynamic noise analysis of high speed train with pantograph system. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008 973X.2015.11.020.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008 973X.2015.11.020        http://www.zjujournals.com/eng/CN/Y2015/V49/I11/2179

[1] MELLET C, LTOURNEAUX F, POISSON F, et al. High speed train noise emission: Latest investigation of the aerodynamic/rolling noise contribution[J]. Journal of Sound and Vibration,2006, 293(3/5): 535-546.
[2] TALOTTE C, GAUTIER P E, THOMPSON D J, et al. Identification, modelling and reduction potential of railway noise sources: a critical survey [J]. Journal of Sound and Vibration, 2003, 267(3): 447-468.
[3] NOH H M, CHOI S, HONG S, et al. Investigation of noise sources in high speed trains [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, 228(3): 307-322.
[4] TAKAISHI T, IKEDA M, KATO C. Method of evaluating dipole sound source in a finite computational domain [J]. Journal of the Acoustical Society of America, 2004, 116(3): 1427-1435.
[5] XIAO Y G, YANG Q, SUN L, et al. Longitudinal type line optimization of high speed train for low aerodynamic noise [J]. Journal of Central South University, 2014(06): 2494-2500.
[6] 刘加利,张继业,张卫华. 高速列车车头的气动噪声数值分析[J]. 铁道学报. 2011(09): 19-26.
LIU Jia li, ZHANG Ji ye, ZHANG Wei hua. Numerical analysis on aerodynamic noise of the high speed train head [J]. Journal of the CHINA Railway Society, 2011(09):19-26.
[7] 孙振旭,宋婧婧,安亦然. CRH3型高速列车气动噪声数值模拟研究[J]. 北京大学学报:自然科学版,2012(05): 701-711.
SUN Zhen xu, SONG Jing jing, AN Yi ran. Numerical simulation of aerodynamic noise generated by CRH3 high speed train[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2012(05):701-711.
[8] 马大猷. 现代声学理论基础[M]. 北京:科学出版社, 2004: 296-306.
[9] 张兆顺,崔桂香,许春晓. 湍流理论与模拟[M]. 北京:清华大学出版社, 2005: 236-263.
[10] BRANCATI A, ALIABADI M H. Boundary element simulations for local active noise control using an extended volume [J]. Engineering Analysis with Boundary Elements, 2012, 36(2): 190-202.
[11] YU H H, LI J C, ZHANG H Q. On aerodynamic noises radiated by the pantograph system of high speed trains [J]. Acta Mechanica Sinica,2013, 29(3): 399-410.
[12] PAPADOPOULOS C I. Development of an optimised, standard compliant procedure to calculate sound transmission loss: numerical measurements [J]. Applied Acoustics, 2003, 64(11): 1069-1085.

[1] 毛杰, 郝志勇, 孙强, 郑旭, 马晓龙, 张强. 多物理场耦合激励下的高铁车内中频噪声计算[J]. 浙江大学学报(工学版), 2015, 49(2): 315-321.
[2] 毛杰, 郝志勇, 卢兆刚, 陈馨蕊. 基于FE-SEA混合法的
汽车镁合金前围板隔声量数值计算
[J]. J4, 2012, 46(12): 2184-2188.
[3] 李冰茹, 王宣银, 葛辉良. 圆柱壳体近场辐射噪声预报与实验研究[J]. J4, 2010, 44(3): 563-568.
[4] 徐亮, 陈心昭, 毕传兴, 等. 近场声全息分辨率增强的正交球面波插值方法[J]. J4, 2009, 43(10): 1808-1811.